Visual Optics and Displays|4 Article(s)
Autostereoscopic display with bicylindrical lens based on temporal-spatial multiplexing
Xueling Li, and Yuanqing Wang
An autostereoscopic display system with a bicylindrical lens based on temporal-spatial multiplexing technique is introduced in this paper. The system comprises a directional scanning backlight, a liquid crystal display panel with high refreshing rate, and an eye tracking device. The directional scanning backlight consists of an LED board, two lenticular lens arrays with matching periods, a parallax barrier film, and other optical films. One of the lenticular lenses is a bicylindrical lens designed to reduce aberration, hence achieving better image quality. A prototype is set up based on the proposed structure. A series of experiments are conducted, and the overall performance of the prototype is evaluated. The LEDs are divided into 10 groups that form 10 view zones. On the one hand, it achieves full resolution in both 2D and 3D display modes. On the other hand, the viewing angle is increased to ±26 deg. Most importantly, the crosstalk is low. The minimum crosstalk is 6%, and the maximum crosstalk is 8.8% at a viewing angle of ±22 deg.
Chinese Optics Letters
  • Publication Date: Jan. 26, 2022
  • Vol. 20, Issue 3, 033301 (2022)
Passive patterned polymer dispersed liquid crystal transparent display
Jing Yan, Xiangwen Fan, Yifan Liu, Ying Yu, Yuming Fang, and Ruo-Zhou Li
Chinese Optics Letters
  • Publication Date: Sep. 28, 2021
  • Vol. 20, Issue 1, 013301 (2022)
High-speed playback of spatiotemporal division multiplexing holographic 3D video stored in a solid-state drive using a digital micromirror device
Kohei Suzuki, Minori Tao, Yuki Maeda, Hirotaka Nakayama, Ren Noguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, and Naoki Takada
Chinese Optics Letters
  • Publication Date: Sep. 10, 2021
  • Vol. 19, Issue 9, 093301 (2021)
Immersive autostereoscopic display based on curved screen and parallax barrier
Junda Guo, Zhihui Diao, Shufeng Yan, Enqi Zhang, and Lingsheng Kong
In this Letter, we present a display system based on a curved screen and parallax barrier, which provides stereo images with a horizontal field of view of 360° without wearing any eyewear, to achieve an immersive autostereoscopic effect. The display principle and characteristics of this display system are studied theoretically in detail. Three consecutive pixels on a curved screen and parallax barrier form a display unit, which can generate separate viewing zones for the left and right eyes, respectively. Simulation and experimental results show that the non-crosstalk effect can be obtained in the viewing zones, which proves the effectiveness of this display system. This study provides some new ideas for the improvement of the autostereoscopic display and to enable envisioned applications in virtual reality technology.
Chinese Optics Letters
  • Publication Date: Jan. 10, 2021
  • Vol. 19, Issue 1, 013301 (2021)
Topics